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Abstract

The effect of micro-gravity on the musculoskeletal system has been well studied. Sig-

nificant changes in bone and muscle have been shown after long term space flight. Similar

changes have been demonstrated due to bed rest. Bone demineralization is particularly pro-

found in weight bearing bones. Much of the current techniques to monitor bone condition use

bone mass measurements. However bone mass measurements are not reliable to distinguish

Osteoporotic and Normal subjects. It has been shown that the overlap between normals and

osteoporosis is found for all of the bone mass measurement technologies: single and dual

photon absorptiometry, quantitative computed tomography and direct measurement of bone

area/volume on biopsy as well as radiogrammetry. A similar discordance is noted in the fact

that it has not been regularly possible to find the expected correlation between severity of

osteoporosis and degree of bone loss.

Structural parameters such as trabecular connectivity have been proposed as features

for assessing bone conditions. In this report, we use fractal analysis to characterize bone

structure. We show that the fractal dimension computed with MRI images and X-Ray
images of the patella are the same. Preliminary experimental results show that the fractal

dimension computed from MRI images of vertebra of human subjects before bedrest is higher
than during bedrest.
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1 Introduction

The effect of micro-gravity on the musculoskeletal system has been well studied. Significant

changes in bone and muscle have been shown after long term space flight. Similar changes

have been demonstrated due to bed rest. Bone demineralization is particularly profound

in weight bearing bones. Much of the current techniques to monitor bone condition use

bone mass measurements. However bone mass measurements are not reliable to distinguish

Osteoporotic and Normal subjects [29]. It has been shown that the overlap between normals

and osteoporosis is found for all of the bone mass measurement technologies: single and dual

photon absorptiometry, quantitative computed tomography and direct measurement of bone

area/volume on biopsy as well as radiogrammetry. A similar discordance is noted in the fact

that it has not been regularly possible to find the expected correlation between severity of

osteoporosis and degree of bone loss [30].

Structural parameters such as trabecular connectivity have been proposed as features for

assessing bone conditions [29]. It has been shown that in vertebral crush fracture patients,

elements such as vertical trabeculae are retained more or less intact, while elements such as

horizontal bracing trabeculae are resorbed entirely [31] [32]. This results in disconnection of

large number of trabecular elements. However, in non-fracture patients connections between

elements were preserved. Long vertical trabeculae are subject to buckling under loading.

When they lose their lateral connections to adjacent trabeculae, the degree of buckling may

exceed the inherent strength of the bone. Structure can be thus be seen as an important

feature in assessing bone condition.

2 Significance

Protecting humans against extreme environmental conditions requires a thorough under-

standing of the pathophysiological changes resulting from the exposure to those extreme

conditions. The knowledge of the degree of medical risk associated with the exposure is of

paramount importance in the design of effective prophylactic and therapeutic measures for

space exploration. Major health hazards due to musculoskeletal systems include the signs

and symptoms of hypercalciuria, lengthy recovery of lost bone tissue after flight, possibility

of irreversible trabecular bone loss, the possible effect of calcification in the soft tissues, and

the possible increase in fracture potential. Our research to relate the local trabecular struc-

tural information to microgravity conditions is a.n important initial step in understanding the

effect of microgravity and countermeasures on bone condition and strength. The proposed

research is also closly linked with Osteoporosis and will benefit the general population.

3 Hypot hesis/Rationale

• The rationale for this research is based on the premise that microgravity conditions

change bone structure as well as bone mass.

• Bone structure can be characterized by fractal geometry.
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• Fractal characterization of bone structural changes due to microgravity conditions is

not only optimal but also pragmatic.

4 Specific Tasks Achieved

The overall goal is the characterization of bone structural changes due to microgravity with
the aid of fractals.

• We have related the fractal dimension computed from MRI images to those obtained

with X-Rays of the same specimen.

• We have computed the fractal dimension from MRI images of subjects before, during
and after bed rest.

• We have computed the fractal dimension of faxitron images of Osteoporotic and Normal

Bone slices of human subjects.

During the summer fellowship, we have implemented and tested the fractal algorithms
on sample MRI bone images.

The long term goal we are pursuing is to integrate fractal and finite element analysis.

We are interested in studying the effect of various external parameters on local structural

information provided by our method. This makes it possible to quantify the effect of coun-
termeasures on local structural information of the bones.

5 Summary of Results Achieved

• Fractal Dimension of the human subject tested is higher before bedrest than during
bedrest. This shows that the Fractal Dimension decreases due to bedrest.

• Fractal Dimension of Osteoporotic subjects is less than the Fractal Dimension of Nor-

mal Subjects in the Faxitron Image Study.

• Fractal Dimension measured with the MRI image and X-Ray image of the Patella is
the same.

6 Fractal Model

With natural objects, familiar metrics from classical geometry such as length, area and

volume depend on the scale at which we decide to look at the object (e.g. the size of the

"yard stick"). As an example, one can show that the surface area of a sand grain is entirely

dependent on the scale at which one chooses to look at it. The smaller the scale, higher the
surface area since more nooks and crannies become visible.
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FractM geometry [12] characterizes this ability of an n dimensional object to fill the n + 1

dimensional space where the relationship of a measure M with topological dimension n and

the scale e is expressed as
1

M(e) o¢ -- 0<r<l (1)
_r _

where the quantity r + n (denoted by D) is called the fractal dimension or Hausdorf-

Besicovich dimension and characterizes the degree of erratic behavior. For an ideal object,

the measure M is independent of the scale e and hence n = D. Thus a fractal object can be

defined as a set for which the fractal dimension is greater than the topological dimension.

There are number of ways in which fractal geometry can be applied to the analysis of texture

in images. Pentland et.al [19] used a method related to the cooccurance matrix technique of

texture classification based on fractal dimension. They find the standard deviations of the

difference of gray levels separated by a given vector and plot it against the vector lengths as

a log-log graph. In another technique [18] two dimensional gray level image is represented

as a three-dimensional surface whose height at each point represents the gray level at that

point and the surface area is measured at different scales. It has also been shown that [9]

a n-dimensional fractal object can be characterized by the fractional Brownian motion of n

variables and that the relationship between the power spectral density and r are independent

of the projection [7]. This makes the fractal dimension computed from the projections of

n-dimensional fractal object represent that of the original object.

It has been shown that the power spectra of a fractal object exhibits an inverse-power

relation to frequency. For one-dimensional signals, this can be expressed as,

1

(2)

and the parameter r is related to the fractal dimension by the equation,

5--r

D- 2 (3)

Thus one can exploit the above relationships to estimate the fractal dimension in frequency

domain by finding the slope of the plot of log power spectra vs. log frequency. For multi-

dimensional case, the corresponding relationship has been shown to be

where

S(501_502_''" _50n) (:X:
501,502, " " "

(4)

2n+3--r

D - 2 (5)

In the next section, we reiterate some basic morphological operations and present an

algorithm to obtain the fractal dimension of a three dimensional surface. This approach gives

us the added capability of dealing with shape using different structuring elements. Since the

underlying theme is based on fractals, all of the above properties hold for morphological
fractals as well.
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Our approachis basedon the above method where the digitized radiograph is represented

as a surface whose height represents the gray level at each point. The surface area at different

scales is estimated using a series of dilations of this surface by a given structuring element

whose size determines the scale. The derivations in the next section shows how one can

obtain the surface area from the volume of the dilates and some simplifications which allows

one to use dilations by a fixed size structuring element.

7 MORPHOLOGICAL FRACTALS

Mathematical Morphology as developed by Matheron and Serra [25] is basically a Set Theory

and uses set transformations for Image Analysis. It extracts the impact of a particular

shape on images via the concept of Structuring Element (SE). The SE encodes the primitive

shape information. In a discrete approach, the shape is described as a set of vectors with

respect to a particular point, the Center, which does not necessarily belong to the SE.

During Morphological transformation, the Center scans the whole image and matching shape

information is used to define the transformation. The transformed image is thus a function

of the SE distribution in the original image.

In particular, Dilation of a set X with a SE Y is given by the expression

X@Y= {x:Y_:UX _0} (6)

where Y_ indicates the translation of set Y with x. The operations gives a set whose surface

is the path traced by the center of the SE Y when it traverses along the surface of X. Using

the above operation, surface area of a compact set X with respect to a compact convex SE

Y which is symmetrical with respect to the origin is given by [25] :

S(X,Y) = lim V(OX epY)
p--.0 2p (7)

where OX is the boundary of set X and G denotes the dilation of the boundary of set

X by the SE Y scaled by a factor p. V(X) gives the volume of set X It has been observed

that even though for "regular" classes of sets, the surface area S(X, Y) is finite, for many

"natural" objects, this can be infinite.

From the above expressions, it can be seen that dilating by pY hides all structures smaller

than pY and therefore is equivalent to looking at the surface at scale p. For experimental

purposes, we can calculate the surface area of a set X at scale p

s(ox, Y,p) = v(ax • pY)
2p (s)

If the object is regular, the surface area will not change with pi. For a fractal object,

S(cOX, Y, p) increases exponentially with decreasing p as seen from equation (1). By taking
the logarithm, we now have
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log(S(OX,Y,p)) = log(K)- flog(p)
D = 2+, (9)

Where K is the proportionality constant. We can now estimate D by plotting log[S(OX, }1",Pi)]

Vs. log[pi] for a given set of scale factors pi, i = 1,2,..., N and calculating the gradient of

the line that fits the plot.

The series of dilation of X by piY required for the above computation can be further

reduced to dilation by the unit element Y by observing that if X_, = X G pY, then

X_. +z = X @ (p + I)Y = (X _ pY) @ Y = X_ e Y (10)

Apart from having projection angle and scale invariance, with the morphology method,

we also have the freedom of selecting a structuring element suited for the problem at hand.

This, coupled with the fact that the method only involves dilation makes the implementation

straightforward compared with the other methods where it is required to find the covering

of the boundary of X (OX) by spheres in 3D and disks in 2D.

The surface area S(X, ]I, Pi) can be iteratively calculated as follows: Let the image X be

defined as the set of triplets {< f(x, y); x = 1, N; y = 1, M} and the the structuring element

Y be given as a set of triplets {< xi, y_,z_ >, i = 1,P}. The pth dilate fp(x,y) is calculated

as

fp(x,y) -- max {L_l(X -_- xi, y -_ yi) Jv zi, i -- 1,2,.-. ,P}

The initial condition fo(x,y)is set to f(x,y).

The surface area at each step can be calculated by using equation(8) where

(11)

S(X,Y,p) - V(X,Y,p) _ ExE1,N;yE1,M(fo(x,y) -- f(x,y)) (12)

2p 2p

8 Alternating Sequential Filters

In this section we will use Morphological Pyramids to compute the Fractal Dimension. Gen-

erally, dilation and erosion are applied in pairs to make the transformation independent of

the origin of the SE. The opening operation of a set F by a SE B is defined as,

FoB= (FOB)OB

The dual operation closing is defined as

F.B=(FeB)eB

A composite opening-closing mapping can be defined as,

Ms(F) = (F o B) • B
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An iterative application of suchan operator is definedas a Alternating SequentialFil-
ter(ASF) [15],[261.

ASF(F) -- MB_ Ms__l...Msl (F)

where N is an integer and BN, BN-1, ...B1 are SEs with different sizes satisfying the
constraint BN D Blv-1 D ...B1.

During a morphological transformation, the structuring element scans the whole image

and modifies each point depending on the structural similarity of the SE with the image

at that point. During erosion, any structure in the foreground smaller than the SE is

removed from the image. Similarly, dilation removes such structures in the background.

The composite operation of opening and closing provides the same result with the added

advantage of independence from the origin of the SE. The result of such a transformation

can be interpreted as a transformation where the details of the original image smaller than

the SE are removed. Thus the repeated application of such transformations using SE with

increasing size will result in a sequence of images with decreasing details. This is equivalent

to a representation of the image at decreasing resolution. This multiresolution representation
is used for the surface area measurement.

Though opening and closing are sufficient for such a purpose, use of ASF is preferred.

ASF is more robust and introduces less distortion than individual application of opening or

closing [15]. A smaller structuring element should be used before a larger one.

The direct application of ASF needs iterative morphological transformation using in-

creasing structuring elements. As the SE size increases, the computation involves increases.

In [15], it has been shown using morphological sampling theorem [4] that ASF pyramid can

be obtained equivalently by decreasing the size of the image instead of increasing the size of

structuring element. At any level of the pyramid, the next level representation is obtained

by subsampling the image and then transforming the sampled image using a constant sized

element. As the image size is decreased and the SE size remains unchanged, this process is
more efficient.

Once the morphological pyramid is obtained, the surface area is computed using a piece-

wise planer approximation. The image is viewed as a sampled version of continuous two-

dimensional surface. In the approximation, the surface is considered as the union of non-

overlapping triangular areas. The triangles are formed in two steps. First, the support of the

surface is divided into a number of squares, each having the side equal to one grid spacing.

An M × N image is composed of MN such unit squares. Each square is represented by

the pixels at four corners (p, q), (p + 1, q), (p, q + 1) and (p + 1, q + 1). In the next step,

each such square is divided into two triangles, one of which is represented by the pixels at

(p, q), (p+ l, q) and (p,q+l) and theother by (p+l,q), (p+l,q+l) and (p,q÷l). The area

of any such triangle is computed using the pixel gray level values of its three corners. The

surface area of the image is approximated by the sum of the area of all the triangles. The

image size decreases as the resolution decreases. To represent the correct surface area at all

resolutions, the area computation takes the resolution step into account by normalizing the

grid space (for example, the grid spacing in the 1/4-th resolution represents 4 gridspacing of

the original resolution).
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The slopeof the log-log plot of the surface area against the resolution is computed using

least-square estimation.

9 Preliminary Experimental Results

9.1 Relating the Fractal Dimension of X-Ray and MRI images

of the patella.

An isolated human patella was scanned in MRI scanner. Additionally, X-Ray images of the

same patella was obtained. Fractal dimension was computed in four different regions of the

MRI image with a window size of 50. Fractal Dimension was also computed in the same

regions on the X-Ray image. Figure 1 shows the MRI image and the X-Ray image of the

patella. The computed fractal dimension in each of the four different areas are shown. The

tabulated results in figure 1 show that there is no significant difference between the fractal

dimension computations between the MRI image and the X-Ray image.

9.2 Faxitron Bone Images of Osteoporotic and Normal Subjects

Faxitron bone images of the normal and human subjects were obtained. Fractal dimension

was computed with a window size of 110 by 110 on six slices of normal and 8 slices of

osteoporotic bone images. The fractal dimension computed with the flat and pyramid SEs

are shown. The fractal dimension computed on the osteoporotic subjects was smaller than

the fractal dimension computed with the normal subjects.

9.3 Bedrest Studies

Fractal dimension was computed on a series of MRI images of the vertebra of human subjects

scanned before, during and after bedrest. The computed result on figure 3 shows that the

fractal dimension of the subject before bedrest was higher than the fractal dimension during
bedrest.
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MRI image of patella X-Ray image of patella

I s/patella_pieces2/MRI-patella.1. [ 50 1D=2.799259 I

I s/patella_pieces2/MRI.patella.2. 150 1D=2.797808 I

I s/patella_pieces2/MRI-palella.3. 150 1D=2.736876 I

I s/pateUa_pieces2/MRl-patella.4. 150 1D=2.694368 1

I s/patella_pieces2/XRAY_patella.1. 150 1D=2.804438 l

Is/patella_pieces2/XRAY_patella.2. 150 1D=2.750343 I

Is/patella..pieces2/XRAY_patella_3. 150 1 D-2.735890 I

I s/patella..pieces2/XRAY_patella.4. 150 1D=2.622544 i

Fig i: Fractal Dimension of X-Ray and MRI image
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Please note that the fractal number can vary between 2 and 3.

The differences obtained between the groups is quite significant.

/***** Results from 152 L4 stack using morphology *****/
/***** Each region-of-interest is of dim. ll0xll0 *****/

es/152_L4_l.l.
es/152_L4_2.1.

es/152_L4_3.1.

es/152_L4_4.1.
es/152_L4_5.1.

es/152_L4_6.1.

110

Ii0

Ii0
Ii0

110

110

Flat

D=2.609848

D=2.670599

D=2.661320
D=2.667757

D=2.667157

D=2.674416

Pyramid
D=2.543952

D=2.595224
D=2.598183

D=2.597461

D=2.593838

D=2.610721

No rma i

/***** Results from 16_L4 stack using morphology

/***** Each region-of-interest is of dim. ll0xll0

s/16_L4_2.1.
s/16_L4_3.1.

s/16_L4_4.1.

s/16_L4_5.1.

s/16_L4_6.1.
s/16_L4_7.1.

s/16_L4_8.1.

s/16_L4_9.1.

110

ii0

110
ii0

110

ii0
Ii0

ii0

D=2.478800

D=2.523201

D=2.518456
D=2.514385

D=2.572345

D=2.572345
D=2.450142

D=2.482301

D=2.417768

D=2.451674

D=2.447915
D=2.446387

D=2.481285

D=2.481302
D=2.402326

D=2.425839

Osteoprotic

Fig 2: Fractal Dimension of Normal

I-ii

& OsteoDrotic image s.



FD value

2.9(3

2,85

2.80

2.75

2.70

2.65

2.60 A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

May 30, 1991 June 6, 1991 Sept 26, 1991 Sept 27, 1991

• Prebedrest

• Po61bedrest

(Patient 1)

Time

Fig 3: Bedrest Study
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10 Conclusion

We use fractal dimension to characterize bone structure. We see that the fractal dimension

computed with MRI images and X-Ray images of the patella are the same. We find that

the fractal dimension of the Osteoporotic subjects to be less than the fractal dimension of

Normal subjects. We also show that the fractal dimension of the subjects during bedrest is

less than the fractal dimension before bedrest.
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